首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89392篇
  免费   1180篇
  国内免费   561篇
测绘学   2316篇
大气科学   6831篇
地球物理   16711篇
地质学   33345篇
海洋学   7210篇
天文学   19324篇
综合类   283篇
自然地理   5113篇
  2020年   507篇
  2019年   518篇
  2018年   3883篇
  2017年   3688篇
  2016年   2935篇
  2015年   1148篇
  2014年   1676篇
  2013年   3425篇
  2012年   2676篇
  2011年   4809篇
  2010年   4451篇
  2009年   5195篇
  2008年   4367篇
  2007年   4961篇
  2006年   2463篇
  2005年   2625篇
  2004年   2453篇
  2003年   2407篇
  2002年   2117篇
  2001年   1770篇
  2000年   1662篇
  1999年   1536篇
  1998年   1499篇
  1997年   1495篇
  1996年   1088篇
  1995年   1148篇
  1994年   1082篇
  1993年   972篇
  1992年   928篇
  1991年   885篇
  1990年   986篇
  1989年   878篇
  1988年   799篇
  1987年   957篇
  1986年   806篇
  1985年   1081篇
  1984年   1225篇
  1983年   1179篇
  1982年   1091篇
  1981年   1050篇
  1980年   974篇
  1979年   911篇
  1978年   925篇
  1977年   831篇
  1976年   798篇
  1975年   740篇
  1974年   783篇
  1973年   774篇
  1972年   484篇
  1971年   457篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
101.
102.
103.
104.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
105.
106.
107.
We present the preliminary results of a study of how small stellar systems merge to form larger ones. As we display the families of galaxies in the μe - Re plane (effective surface brightness versus effective radius) we realize that different morphological types occupy different loci, evidencing the different physical mechanisms operating in each family. As proposed by Capaccioli et al. (1992) this diagram is the logical equivalent of the HR diagram for stars. Here we take some initial steps in understanding of how we can establish the evolutionary tracks, solely due to dynamical processes, in the μe - Re plane, ultimately making a dwarf elliptical to turn into a normal elliptical galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
108.
R. A. Kopp  G. Poletto 《Solar physics》1990,127(2):267-280
Giant arches, first detected by the HXIS instrument aboard SMM, are still a poorly understood component of the flare scenario. Their origin remains uncertain and their behavior, quite different in separate events, has not yet been satisfactorily explained. The purpose of the present paper is to analyze the giant arches imaged on November 6–7, 1980, which, in contrast to that observed on May 21, 1980, were not stationary and had shorter cooling times. In particular, we use a procedure, already applied to the May 21 case, to compute the three-dimensional topology of the magnetic field which forms by reconnection over the active region containing the November arches. This technique allows us to verify that the observed structures are aligned with the computed field lines, lending support to the hypothesis that they originate through a reconnection process which occurs at progressively larger altitudes. Moreover, a calculation of the magnetic energy liberated by reconnection shows that enough energy may be thereby released to account for the observed thermal energy enhancement of the HXIS arches. Finally, the lifetime of the features is shown to be consistent with that predicted by cooling via radiation and field-aligned conduction to the underlying chromosphere.  相似文献   
109.
This article studies the laminar flow of an electrically conducting non-Newtonian fluid (Rivlin-Encksen type) past an infinite porous flat plate to a step function change in suction velocity in the presence of a transverse magnetic field. The Laplace transform technique has been employed to solve the basic differential equations. The solutions of the velocity profile and skin-friction are obtained and the effects of the visco-elastic parameter, the magnetic field and the time parameter on the fluid flow have been studied in several tables.  相似文献   
110.
The SAS® computer software system, widely used and respected for its capabilities in statistical analysis and data base management, now includes a new set of graphic and cartographic procedures called SAS GRAPH?. We have used these cartographic procedures in research on mapping ethno-cultural census data from metropolitan areas in Ontario and in undergraduate and graduate courses in computer cartography. On the basis of that experience, we describe and evaluate SAS/GRAPH'S cartographic capabilities and illustrate with maps drawn by various devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号